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The tank wall effect 
on internal waves due to a transient vertical force moving 

at fixed depth in a density-stratified fluid 

By E. W. GRAHAM AND B. B. GRAHAM 
Graham Associates, Shaw Island, WA. 98286 

(Received 27 November 1978 and in revised form 24 April 1979) 

The fluid is incompressible, inviscid and non-diffusive. It has a uniform Brunt- 
Vaisala frequency, N ,  and is of constant depth, D .  A body or wing moves horizontally 
through the fluid a t  velocity U in a straight line, exerting a vertical force during a 
given time interval. The force is constant, or oscillatory with frequency u. The vertical 
average of the strain rate in a thin surface layer is calculated for a network of points 
behind the body. 

The linearized analysis is first applied with tank walls, then modified for remote 
walls and a vertical force of long duration. 

For moderately high velocity and forcing frequency ( U / N D  = 5 ,  a / N  r 4-16) the 
recurring internal wave pattern just behind the body is well established in one cycle 
of the oscillatory force. A tank width one or two times the depth gives good agreement 
between tank and no-wall calculations for the chosen examples. 

For a stationary wing ( U / N D  = 0 )  in a cubic tank with forcing frequency one-half 
the natural frequency ( u / N  = 3) the strain rates after one cycle are 103 times greater 
than for the moving wing case. After five cycles the magnitudes are twenty times 
larger than after one cycle. Presumably these large increases are due to the continuous 
and efficient feeding of energy into a small fluid volume which occurs for the stationary 
wing. No-wall calculations for many cycles give amplitudes roughly one-half those for 
five cycles in the tank, showing the effect of escaping energy. 

The relation of these developments to stationary phase analysis and preferred direc- 
tions is discussed. 

1 Introduction 
A body in steady or transient motion through a density-stratified fluid produces 

internal waves. Such waves may, for example, be created by the volume of the body 
displacing fluid, which by continuity must flow from the new position of the body to 
fill in the position vacated. Such flow generally involves vertical fluid motion with 
consequent disturbance of the equilibrium stratification. Even in the absence of 
volume effects rigid surfaces may exert forces on the fluid which disturb the equilibrium 
stratification, and produce restoring forces (in stably stratified fluid) and internal 
waves. The wake behind the body, through its turbulent motion and collapse, may 
also cause internal waves. 

Here we consider the effect of a transient lift7 (vertical force) which is exerted by the 

t The stipulation of a rigid body in fluctuating motion leads to a much more difficult analysis. 
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body on the fluid only during the time interval from t‘ = 0 to t’ = T .  This lift may be 
constant during that time interval or vary from plus to minus (upwards to downwards) 
in simple harmonic fashion. The latter case might correspond to a horizontally moving 
body oscillating in pitch in a quiescent fluid or to a steadily moving body in a back- 
ground field of internal waves. 

A related problem considered by Rehm & Radt (1975) is the production of internal 
waves by a body which moves horizontally a t  uniform speed but with superimposed 
‘ heaving ’ oscillations. They considered a constant Brunt-Vaisala frequency ( N )  and 
infinite depth. I n  the heaving problem oscillatory dipoles travelling with the body 
suffice to represent the vertical motion. The lift problem differs in that constant 
strength dipoles must be left a t  rest in the fluid behind the moving wing (or body). 
These dipoles correspond to the vortex sheet behind a moving wing. The rolling up of 
this vortex sheet (not Considered in the linear theory used here) should introduce short 
wavelength internal waves which are not predicted in this report. 

If a body which is stationary (except for small oscillatibns) exerts an oscillatory 
force on the stratified fluid then internal waves will radiate out from the body. If 
the depth of the fluid is finite there will be a maximum speed even for the longest 
waves. Thus one might anticipate some upstream influence for very slowly moving 
bodies and no upstream influence for sufficiently fast motion. Here we avoid the 
intermediate regime of upstream influence and study either higher speed or zero 
speed. 

Four examples are considered here, the first three showing the effect of varying the 
ratio of forcing frequency to natural frequency ( a l N )  with constant U I N D ,  and the 
fourth showing the result of reducing velocity (or U I N D )  to zero. The last case illus- 
trates the greatly increased amplitude of disturbances produced by confining the work 
input (from an oscillating force of fixed magnitude) to a local region instead of distri- 
buting it over an extended path. 

I n  appendix F auxiliary calculations are made in a search for preferred directions. 

2. Objectives and methods 
Internal waves produced by a transient vertical force moving horizontally in a 

density-stratified fluid are considered. The aim is to develop methods for computing 
such waves both with and without tank walls and to present examples illustrating the 
tank wall effect. 

Linearized time-dependent theory is used. First, a postulated solution is shown to 
satisfy all the boundary conditions in the presence of tank walls. But this is a ‘par- 
ticular integral ’ solution which does not satisfy the condition of zero initial disturbance. 
Evaluation of this solution as t‘ -+ - 00 yields a unique combination of eigenfunctions 
which must be subtracted from the particular integral to give a complete solution with 
zero initial disturbance. This procedure (replacing the use of Laplace transforms) gives 
the expression to be used in a tank. 

The analysis in a fluid of infinite horizontal extent could be made without reference 
to the tank case. However it seems more economical to extend the preceding analysis. 
A hierarchy of large distances establishes the relative rates of oscillation of various 
functions which are to be integrated when the tank length and width become 
very large. Performing the simplified integration yields the quasi-steady state 
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i z = -b 

x ' = O  x ' = L ,  

FIGURE 1. Co-ordinate system and geometry. 

which applies after the body has travelled a long distance in the absence of walls. 
Stationary-phase approximations, if desired, can then be made in conventional 
fashion. 

3. Development 
It is assumed that the fluid is incompressible, inviscid and non-diffusive, has a 

constant N (BrunkVkiisalii frequency) and satisfies linearized flow equations. The 
fluid is confined within a rectangular tank of length L,, width 2L,, and depth D. A 
horizontal surface of length 1 and width s is assumed to represent either the body plan- 
form or a small wing, depending on the dimensions chosen, but will be referred to as a 
wing. For simplicity the lift is considered to be uniformly distributed over the wing. 
The wing moves along the centre-line of the tank a t  an arbitrarily chosen fixed depth. 
It starts a t  a distance xi from the left end wall a t  time t' = 0 and travels a t  fixed 
velocity U for time 7. When the lift varies in simple harmonic fashion it is assumed to 
complete exactly one or three or five (etc.) cycles in the time 7.  

The co-ordinates X I ,  y, z are fixed in the fluid with origin in the left tank end wall (see 
figure 1) .  The corresponding fluid velocity components are u, v, w with subscripts U 
(upper) and L (lower) to indicate an imaginary division of the fluid into regions above 
and below the plane of the wing (z  = 0) .  The free surface is then a t  z = a and the bottom 
of the tank a t  z = - b ,  witha+b = D. 

The natural modes of oscillation of the fluid correspond to a wavenumber k ,  = mn/L, 
in the x' direction and a wavenumber k ,  = nn/L2 in the y direction, where m and n are 
integers. The resultant wavenumber is k = (k: + k$. 

The Brunt-Vaisala frequency, N ,  is defined by N 2  = - gjiJj5, where g is the accelera- 
tion due to gravity, ji is the mass density of the undisturbed fluid and the subscript z 
denotes differentiation. The frequency of one Fourier component of the internal wave 
motion (relative to co-ordinates fixed in the wing) is designated w ,  and the number of 
cycles passed through by the simple harmonic force in time 7 is n'. A parameter a is 
defined as 

a = [N2(w + Uk,)- ,  - 114. (1)  

I n  the regions above and below the wing the partial differential equation to be 

(2) 

satisfied is (e.g. see Philips 1969, equation 5.2.7) 

V2wV,+ N2Vi w = 0, 
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where V2is the Laplacian operator, V i  is the two-dimensional Laplacian operator in the 
horizontal plane, and w is the vertical velocity of the fluid. The Boussinesq approxima- 
tion has been used here. 

We need a solution for w which satisfies the condition w g 0 a t  the free surface, 
w = 0 at the bottom, u = 0 a t  x’ = 0 and a t  x‘ = L,, and v = 0 a t  y = f L,. Also we 
need a t  z = 0 to  have wu = wL and finally, with Ap the deviation from hydrostatic 
pressure, Apu - ApL = 0 except a t  the moving wing, where it is uniform over the wing 
and equal to  F(t’) /s l .  F(t’)  is the vertical force exerted by the wing on the fluid, and its 
maximum value is F,. 

Such a solution can be constructed by methods very similar to  those used in a pre- 
vious paper (Graham 1973; see also appendix A). However the reader may find it 
simpler if we merely postulate a solution and indicate the verification. 

The following solution is suggested: 

wu = - 2Fo C,, cos (k, x’) A ;  k cos (k, y)  
~ i j s l  n 

m n  

sin ( 4 7 ~ )  sin (kab) sin [ka(a - z ) ]  sin [kl(xi + Ut’)  + w(t’  - &7)] dw 
o ~ ( o +  Uk,) sin (kaD) [l - ( 2 n n ‘ / ~ w ) ~ ] *  ; (3) 

the solution for wL is the same except that sin(kab)sin[ka(a-z)] is replaced by 
sin (kaa) sin [ka(b + z ) ] .  The bracket [l - ( 2 n n ’ / ~ w ) ~ ] *  is retained only for the oscilla- 
tory force. u, v and p are found from w through the relations 

and 
nns S (%) with Ah = -. 

2352 
(7) 

To verify this solution we note that w varies sinusoidally with X I ,  y, z, and t’,  and 
substitution into ( 2 )  yields (1 ) .  Setting z = a or z = - b gives w = 0 as required a t  the 
free surface and a t  the bottom of the tank. From (4) and ( 5 )  we obtain u and v and note 
that u = 0 a t  x’ = 0 and a t  x‘ = L, while v = 0 a t  y = & L,. At z = 0 ,  wu and wL are 
both proportional to  sin (kab) sin (kaa) with the same multiplying function, so con- 
tinuity is satisfied between the upper and lower fluid region. 

To check the lift produced by the wing we use (3) and (6) to obtain Apu -ApL a t  
z = 0. The terms (x’ -xi - Ut‘) and (x’ + xi + Ut’)  appear. The former is a measure of 
distance in co-ordinates fixed in the moving wing, and may be labelled c. On the other 
hand (x’ +xi + Ut’) is a measure of distance in a co-ordinate system fixed in an image 
wing moving in reverse direction outside the tank. This latter term (describing the lift 
on the image wing) can be omitted, and we then get 

m n  

where symmetry permits the summation in m and the int,egration in w to be made from 
0 to  00. The Fourier coefficients now become 

A ,  = (2/mn) sin (mnl/2L,) with An = 1/2L,, 
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FIGURE 2. The k, ,  w plane. 

and the double summation in m and n is recognizable as a double Fourier series 
representing ‘hat ’ functions in E and y extending over the wing planform. Under the 
integral sign that portion of the integrand which multiplies cos [w(t ‘  - 47)] is the Fourier 
transform for a ‘hat ’ function in t’ (centred on 97) if the starred bracket is omitted. If 
that bracket is included the transform corresponds to a sinusoidal function. 

This completes the verification of the postulated equation, (3), although for further 
reassurance one might compute the vorticity in the fluid. (This has been done for the 
constant lift case but is not included here.) 

It is now necessary to evaluate (3) at large negative times (t’ -+ - 00) and remove any 
initial disturbance in the tank. First we go to skewed co-ordinates as shown in figure 2. 
Using symmetry (reflexion in the origin) the integration is performed in the half-plane 
above ( w +  Uk,) = 0 and doubled. It then takes the form 

w w  

wu = -5 c c C,A:,cos(k,x’)cos(k2y)k 
npsl - w  0 

m n  

N-Uklsin (kab) sin [ka(a - z ) ]  sin (+) sin [k,(xA + Ut’)  + (t’ - 47) w ]  d o  
(I-Uk, wa(w+ Uk, )  sin (kaD) [I  - (2nn’/~w)z]* 

sinh (ka’b) sinh [ka’(a - z) ]  sin (87~) sin [kl(xi + Ut’) + (t’ - 7 o 

N -  Ukl wa’(w + Uk,)  sinh (ka’D) [l - (2nn’/~w)2]* I d ” ) .  
(9) 

a = [NZ(w f Uk,)-2- 113 

and a’ = [ 1 - N2(W + Uk1)-2]t. (10) 

+I 
where 

When t‘  is large and negative the final sinusoidal term in the integrand oscillates 
rapidly with changing w .  Such a term interacts weakly with slowly varying terms. 
Substantial contributions to the integral occur (a)  when the rapidly varying function 
ceases to be rapidly varying (e.g. a t  some stationary phase points), or ( b )  when the 
slowly varying function becomes rapidly varying (i.e. at singular points). This case is 
of the latter type (see appendix B) so we look a t  the singular points. Such terms as w ,  
a, ( w +  Uk, )  and [ I  - (2nn’/m)Z] appear in the denominator and may have zeros. 
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However there is in each case a compensating term in the numerator which prevents 
these zeros from creating singular points. The term sin(kaD) provides all of the 
singular points. 

For sin (kaD) = 0 we have 
kaD = pn, 

where p is an integer. 
Eliminating a between (10) and ( 1 1) gives 

where up is the value of w corresponding to a particular integer p. This is the frequency 
of the natural mode designated by lc and p (or m, n and p) as observed a t  the wing. f is 
the frequency of the same mode as seen by an observer a t  rest with respect to the tank. 

Evaluating the contributions from the poles in (9) gives 

4F0 
wu = r c C,,AA cos (k,x’) cos (k2y) 

~ $ 1  -m o 
m n  

O0 sin (bpn/D) sin [(a-z)pn/D] sin [+(f - Uk,) ]  cos [k,(xL+ BUT) + f(t’ - i ~ ) ] f ~ / N ~ .  xc , 
P (13) 

cos (PT) D ( f -  Uk,)  [ 1 - ( 2 n n ‘ / ~ (  f - U I % ~ ) ) ~ ] *  0 

the expansion for wL is the same except sin (bpn/D) sin [ (a  - z)pn/D] becomes 

sin(apn/D)sin[(b+z)pn/D]. 

However, b = D - a andp is an integer, so these two expressions are actually identi- 
cal for all x and the expression for wu is valid everywhere in the tank. 

For this solution with t‘ large the fluid oscillates in its natural modes for the tank as a 
whole without regard to the interface a t  z = 0. The only discontinuity a t  z = 0 is in the 
parts of u and v which are independent of time. This corresponds to vorticity fixed in 
x, y, z co-ordinates and independent of time. 

The complete solution is (9) minus ( 13), and for t’ large and positive the solution is 
- 2 times (13). It should be emphasized that - 2 times (13) is also correct for all t’ 
greater than T .  At t’ = T the lift force vanishes, and in this linearized inviscid theory 
there is then no mechanism for altering the energy in any mode or in the fixed vortex 
system which remains in the fluid. 

3.1. The tank with remote end walls 
We wish to make the tank very long, so that the wing can travel a long distance and 
the force, if oscillatory, pass through many cycles. In  traversing this long path the 
wing should never be near the end walls, and this suggests the use of a hierarchy of large 
distances. We let the tank length approach infinity cubed, the path length (starting 
from the centre of the tank) approach infinity squared, and the far field distance 
approach infinity. Thus the path length is small compared to the tank length, the far 
field distance small compared to the path length and the wing length small compared 
to the far field distance. 

We start with (13)t multiplied by the factor - 2 which corresponds to t’ > T with no 

t The subscript U on w was shown to be unnecessary and is therefore omitted. 
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disturbance for t‘ negative. A new co-ordinate, xH, is chosen to measure lengthwise 
distances from the centre of the tank which will be the starting point, 

x’ = X” + *Ll, x; = *L,. (14) 

Then let L, -+ 003, multiply (13) by - 2(L,/n) dk, and integrate in k, from - 00 to + 00. 

Replacing 2nn’/r by u, and letting u = 0 designate the constant lift case, we get 

n P 

-sin (ik,  1) cos [k,(z” + iL1)] cos [SIC, L, + {ilc, U7 +f(t’ - i ~ ) } ]  

sin [$( f - Ulc,) r ]  dk, 
X [(f- Uk,) - a2/(f- Uk1)l’ 

As L, becomes large cos2 (Qk, L,) and sin2 (ik,  L,) approach 4 as an average over a 
small range of k,. Similarly sin (+k, L,) cos ( ik ,  L,) approaches zero. Using these 
relationships, letting t’ = 7 and X” = Ut‘ + 6 and expanding trigonometric products, 
the integral in (15) can be expressed as the sum of two integrals: 

f 2  sin ( ik ,  1) sin [t’(f - Uk,) - k, 4 dk, s -  -m N 2  4k1 [(f - Uk,) - u 2 / ( f -  Uk1)I 

(16) 
f 2  sin(ik,l) sin (k, 6 )  dk, . +s -m - N 2  4k1 [(f - Uk,) - a2/(f-  Uk,)]’ 

These two integrals can be treated separately, letting t’ approach 0 0 ~  in the first and 
6 approach 00 in the second. The principal contributions to both integrals come in the 
neighbourhood of CT, = (f - Uk,), and have the same magnitude. However, the second 
one can either cancel or double the first. Defining c ,  f, and k,, by the following equations 

(17)  1 c I= (af/ak,)klc - u, f, = k tT + Uk,, 

k -- 1 +  p2n2 ]+T%, 
(kq,+ki)D2 

the vertical velocity produced by the internal wave system becomes 
- a  W 

w = -  Fo~AA:cos(k2y)C ( -  l)Psin(bpn/D)sin[(a-z)pn/D] 
jidD 0 1 

P Yb 

and twice this for u = 0. 
Here the tank length, L,, approaches m3, the distance travelled by the wing, Ut’, 

approaches 00, and the far field distance, 161 approaches 00. k,, is defined implicitly in 
the last equation of (17) ,  but solutions are readily obtainable by iteration for many 
problems. 

Let L,, the half-width of the tank, approach 003. To change from a summation to an 
integration we multiply (18) by (L,/n) dk,. The integrand then contains (af/ak,)k,c - u, 
which is c. This is a function of k,, the variable of integration. To simplify the analysis 
we discard those cases in which c passes through zero within the range of integration. 

4 P1.m 97 

3.2. The tank with remote end and side walls 
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It is shown in appendix C that U > N D / n  is a sufficient condition for the exclusion of 
such cases.? This is a particularly convenient condition to impose since i t  also ensures 
that there are not more than two values of k,, to consider (i.e. the last equation of (17)  
has a single root when the sign choice has been made). Also, as indicated in appendix C, 
a convergent iteration process is available for determining klc. 

With the above restriction, U > N D / n ,  the term [ I +  I c I g / c I f ; l ]  can be taken 
outside the integral sign, and [(af/ak,),lc - U]-1  is not singular. 

Ahead of the wing the term [I + IcI [ / c  It/] becomes zero, and behind the wing it 
takes on the value two, so that behind the wing w becomes 

(19) 
sin ( i k , s )  f: sin ( ~ k , , l )  cos ( k ,  y )  cos (klc6)  dk, - 

klcl (af/akl),,c - u1 
and twice this for u = 0, where only one value of k,, exists. For v + 0 there are two 
values of k,, whose contributions to w must be added. U / N D  must be greater than l/n. 

3.3.  Stationary phase analysis with y large 

Let y as well as [ approach 00 and cos (k ,  y )  cos ( k l c [ )  in (19) becomes the rapidly 
oscillating part of the integrand as k,  varies. The vertical velocity produced by the 
internal wave system a t  the completion of an odd number of cycles is then, by sta- 
tionary phase analysis, 

and twice this for u = 0, where 

tg(x) = sin x 
tg(x) = cos x 

if [(a2k,,/i3k~)kzc is negative, 
if [(azk,, /ak~),zc is positive. 

Here y ,  = ( k , y +  k lcc[ ) ,  [ is negative, y is positive and U > N D / n .  The quantity 
k ,  is defined by ay/ak, = 0 and klcc is k,, evaluated at  k, = k,. 

3.4. Stationary phase analysis for U = 0 
When the wing is stationary the distance travelled, Ut’,  can no longer be the inter- 
mediate distance in the hierarchy of large distances previously used. Instead the 
velocity (af/ak,),,c (related to the group velocity) replaces U ,  and multiplied by t’ must 
be much less than the tank dimensions and much greater than the distance out from 
the wing to the observation point. 

With U set equal to zero (19) can be used for the stationary phase analysis. The 
vertical velocity then becomes 

P 

, (21) 
sin (QPs sin 8)  sin (iP1 cos 8)  cos (Pr - an) 

(PrP 
X 

sin 8 cos 6, 

t If u / N  > 1 + 2 1 3 4 3  the condition becomes merely U > 0. 



The tank wall effect on internal waves 99 

where P = pncr/D(N2- a2)t, and y and [ have been replaced by r sin 0 and r cos 8, 
respectively . 

< N. There is no real k,, and no stationary phase contri- 
bution when the forcing frequency exceeds the Brunt-Vaisalh frequency. This was 
pointed out by Mowbray & Rarity (1967) in a two-dimensional study. 

This result applies at  distances out from the wing which are large compared to the 
wing dimensions and at  the completion of a large number of cycles. The lift oscilla- 
tions on the wing must have continued for a time t' which is much greater than 

pnr/[DN( 1 - a2/N2)9], 

This result applies for 

where r is the radius to the observation point. 

tends to repeat (with modified amplitude) a t  intervals in r such that 
It is interesting to note from the term cos (Pr - 4.) that the disturbance pattern 

Ar = (2D/a) ( N 2  - a,)*. 

The contribution from each value of p is scaled down in the same proportion, 

[ r / ( r  + AT)]*. 

The ratio of the horizontal interval Ar to the depth D (Ar/D = 2(N2 - a2)*/a) suggests 
reflected waves with a preferred angle of propagation in a vertical plane. Preferred 
directions are discussed by Mowbray & Rarity (1967) in connexion with a two- 
dimensional problem, and by Hendershott (1  969) for a three-dimensional example. 

4. Examples 
4.1. Calculation methods 

Equation (13) multiplied by - 2, and equations (18)) (19), (20) and (21) can be used to 
calculate the vertical velocity produced by the internal waves.? In  all cases the depth, 
D,  is finite. Equation (13) applies to a rectangular tank with both end walls and side 
walls. A triple summation is required, which may be time-consuming, but the results 
are valid everywhere in the tank. In  (18) the end walls are removed, the oscillating force 
is assumed to have operated for a long time and the observation point must be far 
behind the wing. Only a double summation (in n and p )  is required. Equation (19) is 
obtained by removing both end walls and side walls. Integration in k,  replaces sum- 
mation over n, and near the path (i.e. where y is small) the integration is readily per- 
formed. In  (20), a stationary phase analysis, both the lateral and longitudinal distance 
to the observation point must be large. In the particular examples chosen here (20) is 
less useful than (19). Equation (21) applies to a stationary wing and the stationary 
phase analysis requires that observations be made in the far field long after the initial 
application of the oscillatory force. 

Convergence of the summations presents some problems. Figure 3 shows a typical 
example for a double summation in p and n. With m = 2 and n summed from zero to 
eighty we examine the effect of summing p to various limits, p .  The ordinate of the 
curve is the summation 

t Only (13), (19) and (21) are used in the primary calculations of this paper. 
4'2 
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FIGURE 3. Convergence of a double summation. ~n = 2, 

and the abscissa is F ,  which in this case takes on only odd integral values. For 11 = 1 
W = - 2.39, for ?, = 3 W = + 15.25, for I J  = 5 W = - 13.56, etc. This oscillation con- 
tinues until the envelope curves cross (between 21 and 23 on the F scale). Then a 
smaller amplitude oscillation begins, suggesting ultimate convergence at W 2.6. 
However it would be necessary to extend j5 to a much higher value to verify this. 

Because of the difficulty just described it is desirable to improve convergence by 
considering that the lift on the wing is distributed vertically over a small distance 2s. 
Also we find w a t  a distance s below the free surface (see appendix D). Dividing this w 
by e then gives an average strain rate in a surface layer of thickness e. In  a ‘typical ’ 
case an e/D of 0.04 increases w(a - e)/e by approximately three per cent over the value 
for e/D = 0. Such averaging broadens and lowers very sharp peaks but does not 
eliminate them. The effect on relatively smooth velocity profiles is slight since averag- 
ing affects primarily the ‘fine structure ’ (short wavelengths) of the flow pattern. 

Having improved the convergence in p it is then desirable (as shown by experience) 
to sum first and most extensively in p, terminating the series wherepe/D is an integer. 
I n  practice this tends to eliminate spurious contributions both from higher n (or k,) 
terms and from the higher p values. Extension of the n (or k,) range alone often intro- 
duces terms which do not appear to converge satisfactorily. However, an adequate 
extension of they, limit generally shows that the contributions from n (or k,) extension 
are negligible. 

I n  addition to the vertical averaging described (which results in the calculation of 
w(a-s) /e)  other minor changes are made in (13) etc. before computation. Instead of 
k, and k, the non-dimensional K ,  and K ,  are used, with K ,  = k, D, etc. Also, certain 
parameters and constants are transferred to the left-hand side and form a dimension- 
less variable with w (see appendix E). 
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Tank wall 

-- Centre-line 
-2.0 - 1 .o 0 

Wing starts at [ID Wing 
now -4 [ID = - 10.00 

Wing Wing 
start now 

FIQ~RE 4. Contours of constant G ( U - E ) / E  for u / N  = 5n, example 1. ( a )  n’ = 5,  L J D  = 10. 
( b )  n‘ = 1 ,  L,/D = 6 .  

4.2. Discussion of examples 

In  all examples the wing is in a plane halfway between the free surface and the bottom. 
The wing exerts a vertical force on the fluid which starts at  time zero, drops to zero at  a 
certain time r and remains zero thereafter. The time r is also the time for observing 
the vertical velocity w, and, in the case of the oscillatory force, corresponds to the 
completion of an odd integral number of cycles. The distance E is defined by s / D  = 0.04 
in all cases. The quantity ( - w(a - E )  pslD2N/~22rF,) x lo4, labelled G(u - E ) / c ,  is 
calculated for all cases. The average strain rate is w(a - c ) / e .  The average 

dwldz = - W ( U - - € ) / € .  

Example 1.  In  the first example the oscillatory force has a frequency 577 times the 
natural frequency ( u / N  = 57r). The tank length is varied from two to six to ten times 
the depth (L, /D = 2, 6, or 10). The width equals the depth (2L,/D = 1) .  The rec- 
tangular planform wing measures two and one-half percent of the depth in the direction 
of motion and seven and one-half per cent laterally ( l /D  = 0.025, s / D  = 0.075). The 
velocity of the wing is five times the product of total depth and Brunt-V&isiil& fre- 
quency ( U / N D  = 5 ,  Froude number = 2nU/ND = 10n). 

Figure 4(u) shows contours of constant G(a-e ) /e  for the case where L J D  = 10. 
These contours are shown for the cycle immediately behind the wing. The cases where 
L J D  = 6 and 2 are not separately shown because the contours are identical with 
L, /D = 10 within the accuracy of plotting. Figure 4 ( b )  shows similar data for a case 
in which L J D  = 6 and the wing starts one-third of the tank length from the left end 
wall, travelling over the middle third of the tank only. The contours strongly resemble 
those in figure 4 (a) ,  but the start and end of the pattern show appreciable effects from 
the change of boundary conditions a t  the ends of this single cycle. The absence of the 
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FIQURE 5 .  Comparison of C(a-e) /e  for tank and no-wall cases, u / N  = 577, example 1. (a) NO 
walls, n’ -+ a. (b) 0, no walls, n’ -+ co; __ , tank, L , / D  = 10, L, /D  = 0.5, n‘ = 5 .  

end wall at  completion of the cycle and the lack of a continued pattern a t  the beginning 
of the cycle appear to have similar effects. 

The rapid establishment of the typical pattern is somewhat surprising. Calculations 
were also made with the walls removed and after many cycles had been completed 
(see figure 5a).  The agreement with calculations for the tank (see figure 5 b )  is evident. 
Note that the no-wall analysis uses (1 9) modified for computation, and is not a sta- 
tionary phase analysis. The latter would show zero disturbance outside the very narrow 
wedge indicated in figure 5 (a) .  

Example 2. The frequency of the oscillatory force is reduced to four times the 
natural frequency here ( a / N  = 4). The wing velocity is the same as before ( U / N D  = 5,  
Froude number = 1On). The tank width is the same as before (L,/D = 0.5), and the 
wing planform is unchanged. 

The tank is first made just long enough to accommodate one cycle ( L J D  = 2.5n), 
then long enough for three cycles (L,/D = 7 . 5 ~ ) .  The values of 6 ( a  - e ) / e  are almost 
identical in the cycle immediately behind the wing. These results are shown as one 
curve in figure 6 ( b ) ,  labelled L,/D = 0.5. Calculations were also made after many cycles 
with all walls removed and these results are significantly different (see figure 6 b ) .  The 
tank width was then doubled (L , /D  = IqO), and these results (in figure 6a and b )  show 
generally good agreement with the calculations for many cycles with walls removed. 
Only in the vicinity of the sidewall are the differences appreciable, which might be 
expected. This suggests that the pattern is quickly established but agrees with the no- 
wall case only if the tank width is sufficiently large. 

Stationary phase analysis would show all disturbances confined to the narrow wedge 
indicated in figure 6(a) .  

Example 3. The wing carries a constant lift in this case ( a / N  = 0). The wing planform 
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FIGURE 8. Contours of constant @(a - e ) / c  for stationary wing, cr/N = 4, example 4. (a)  n’ = 5. 
( b )  n‘ = 1. f i ( a - c ) / c  = contour label x lo4. 

and wing velocity ( U / N D  = 5 )  are unchanged, and the tank width is the same as in the 
last part of example 2 (L,/D = 1.0). 

Figure 7 (a )  shows lateral profiles of 6(u  - E ) / E  a t  ten streamwise stations in the tank 
extending downstream from the wing (at the right-hand tank end-wall) for a distance 
defined by </D = 2.57r, the total length of the tank corresponding to 7.57r. Below, 
figure 7 ( b ) ,  are shown in expanded co-ordinates the $(a - E ) / E  values for three typical 
stations. The values in the tank are labelled L,/D = 1.0. A no-wall calculation indi- 
cated by points is included for comparison. As in the preceding example the agreement 
is good near the wing path and the introduction of the wall appears to exaggerate 
disturbances only in the wall neighbourhood. 

Typical stationary phase results are shown in figure 7 ( b ) .  They are confined to the 
wedge appearing in figure 7 (a ) ,  and would become useful much further downstream. 

Example 4. We now set U / N D  = 0, and for simplicity make the wing planform 
square (Z/D = s / D  = 0.1), and the tank square (L,/D = 2L,/D = 1.0). The wing is 
placed a t  the centre of the tank (xL/D = 0.5) and exerts an oscillatory force on the fluid 
with frequency equal to half the natural frequency ( a / N  = 0.5). 

For a wing force stopping after one cycle the contours of constant G(a-e)/E are 
given in figure 8 ( b ) .  Because of the symmetry only one octant is shown and this indi- 
cates a basically circular wave pattern. When the wing force goes through three cycles 
and stops, the quasi-circular pattern is confined to the inner half ‘radius ’ of the tank, 
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FIGURE 9. $(a- E ) / E  for a stationary wing, no walls, u / N  = 4, 7 -+ 00, example 4. 

and the outer portion is apparently altered by reflected waves (case not shown here). 
In  figure 8 ( a )  the pattern produced by five cycles of force appears. Here the reflected 
waves have apparently had time to erode most of the basically circular pattern except 
for the inner quarter of the tank 'radius'. The amplitude of the disturbances is now 
approximately twenty times that for the one-cycle case. 

Also of interest is the large increase in amplitude (by factors of lo3 and lo4) over the 
moving wing cases, This is probably caused by the continuous feeding of energy into a 
small volume of fluid for the stationary wing. 

In  figure 9 we show radial profiles ofG(a - e)/c for a no-wall case after many cycles of 
operation. For the first time in this paper a stationary phase analysis is convenient for 
obtaining no-wall results. The radial profiles at three different' angles are quite similar, 
emphasizing the basically circular pattern. Disturbances are nearly zero outside the 
r / D  range 0.65 to 1-10 in figure 9, but regions of large disturbance are periodically 
repeated at int,ervals (Nz  - @)t (2/(r) in r / D  as mentioned in the discussion of (21). This 
corresponds to waves reflected alternately from the top and bottom of the fluid with a 
preferred direction of 30" to the horizontal. This angle is in agreement with that shown 
by Mowbray & Rarity (1967) and by Hendershott (1969). 

The magnitudes shown in figure 9 are about half those for the five-cycle case in the 
tank (figure 8a). This is probably an indication of the energy which escapes into the 
surrounding fluid when no walls are present. 

5. Discussion of results 
5.1. Comparison of tank and no-wall results 

generally good for the moving-wing cases. The exception is example 2 (cr/N = 4) when 
For the examples chosen the agreement between tank and no-wall flow patterns is 
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the tank width equals the depth (L,/D = +). Increasing the tank width to twice the 
depth ( L J D  = 1) produces good agreement for that case. In  all cases, as one would 
expect, the two solutions being compared differ near the tank walls. For all the moving 
wing cases U I N D  = 5 ,  and other values of this parameter as well as other wing geo- 
metries and locations require investigation before general statements can be made 
about the significance of tank wall effects. 

The stationary wing case shows poor agreement. It might perhaps be anticipated 
that with protracted feeding of energy into a localized fluid region any quasi-steady 
state approached could be seriously altered by removing the walls and allowing energy 
to escape. 

5.2.  Repetition of the wave pattern 
The quick establishment of the wave pattern and its repetition are especially noticeable 
for example 1, figures 4 and 5 .  From (19) or ( E  3 )  we see that behind the wing the 
fluctuation of $(a -c)/c with 5 (distance in the direction of motion) depends only on 
cos (Klc 5 1 0 ) .  In  the special case when U I N D  and o / N  approach infinity 

K1, r aD/U 

if c / D  is fixed. Then the cos (Klc  C/O) can be removed from under the integration and 
summation signs and the flow pattern repeats in 5 with period 27rU/a. Example 1 with 
U I N D  = 5 and o / N  = 57r approximates this condition. 

5.3.  Preferred directions 

Disturbances in the flow are in general largest near the wing and decrease with in- 
creasing distance from the wing. In  certain ‘preferred’ directions the rate of amplitude 
decrease with increasing distance is less than for non-preferred directions. Stationary 
phase analysis yields these preferred directions which, for our finite depth analysis, 
would be vertical planes through the wing inclined outward to the wing track. Far 
behind the regions of largest disturbance which we have studied, stationary phase 
methods would apply and such preferred directions would appear for examples 1 
and 2. 

Rehm & Radt (1975) assumed inJinite depth and, applying stationary phase methods 
in three dimensions, found preferred directions (rays from the body) inclined both 
laterally and to the horizontal. For such an analysis to apply with finite depth the 
observation point should be both close to the body in terms of depth and far from the 
body in terms of wavelengths. In examples 1 and 2 the typical wavelengths (27rD/Klc) 
are greater than the depth so three-dimensional stationary phase results cannot 
exist . 

Appendix F illustrates this point. First, a survey of w is made in a vertical plane 
behind the wing and normal to the wing path using the parameters of example 2. 
Figure 10 shows this and the dominant feature is the high velocities induced by trailing 
vortex lines left in the fluid. This is a feature which does not appear in the heaving 
problem studied by Rehm & Radt, and might tend to obscure preferred directions. To 
see other features of the velocity field we remove the trailing vortices by making the 
wing span very large (s/D-tco).  Figure 11 shows a survey of w along a vertical line 
behind the wing for a / N  = 4 and three values of UIATD. Only for values of U I N D  
much lower than 5 (used in examples 1 and 2) are preferred directions apparent. The 
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FIGURE 10. Survey of w* in a vertical plane, 

a / N  = 4.0, in, no wall. 

inclination to the horizontal is approximately in agreement with the results of Rehm 
& Radt (roughly 2 to 6 degrees). 

For example 4, the stationary wing, preferred directions appear and are in agreement 
with the results of Mowbray & Rarity and of Hendershott. 

Appendix A. Description of method of obtaining equation (3) 
A wing of rectangular planform is to start at a given time and place, move through 

the fluid horizontally at  constant speed, then stop a t  a prescribed time. While the wing 
moves on this path it supports a pressure difference between the under side and the 
upper side (the same at  all points on the wing). The vertical force or lift so carried may 
be constant or vary in simple harmonic fashion during the time the wing moves, but 
must in either case be zero a t  all other times. 

We first divide the fluid by passing an imaginary horizontal plane through the fluid 
a t  the level of the wing and consider separately solutions of the partial differential 
equation in the upper and lower regions. These solutions, periodic in both space and 
time, are chosen so that vertical velocity is continuous across the plane but pressure is 
discontinuous. They are also chosen to represent standing waves in a co-ordinate 
system fixed in the moving wing. Thus in the wing co-ordinate system we have a set of 
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discrete wavelengths of spatially periodic lift distributions extending over the entire 
plane separating upper and lower fluid. These periodic distributions in space have 
fixed nodes, but may fluctuate in time with a continuous spectrum of frequencies, w .  
The problem is first to combine the spatial distributions in a double Fourier series to 
represent the lift confined to the wing planform (and images). 

Then the continuous spectrum of frequencies must be utilized (in a Fourier integral) 
to represent the desired time history of the lift, which is zero until the wing starts 
moving, then constant (or varying sinusoidally) until the wing stops, then zero from 
that time on. 

0 at  the free 
surface. Solutions for the lower region must satisfy a similar condition, w = 0, at  the 
bottom. The Fourier series representation laterally produces an infinite set of images 
laterally and permits the insertion of tank side walls in vertical planes of symmetry. 
To obtain planes of symmetry in which the end walls can be inserted is a little more 
difficult, since the wing changes its distance from the end walls. This can be accom- 
plished by superimposing on the forward-moving system (the wing with doubly 
infinite set of images) a similar system moving in the opposite direction. Then halfway 

Solutions for the upper fluid must satisfy the boundary condition w 
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between a forward-moving wing and a backward-moving wing (or image) there is a 
plane of symmetry at rest with respect to the fluid. In  such a plane an end wall can be 
inserted. 

By such methods the proposed equation for w, (3), was obtained. 

Appendix B. Discussion of absence of stationary phase points 
in equation (9) 

When w approaches - Uk, or AT - Uk, in the first integral of ( 9 )  d a / d w  approaches 00. 

The terms sin (kolb), sin [ka(a - z ) ]  in the numerator and sin (kaD) in the denominator 
then oscillate rapidly with small changes in w .  It might appear that stationary-phase 
points could be defined by suitably combining terms in the numerator. However the 
rapidly oscillating term in the denominator does not fit into this picture. 

More generally one can perhaps reason as follows. The first integral in (9) can be 
rewritten as 

N-Uk1-E 
lim 1 . . . dw. 
E-0 -Uki+€ 

For each E a lower bound can be set on I t ’ [  such that It‘I is always much greater than 
terms such as d ( k a b ) / d o .  It is then possible for E to approach zero and It‘I to approach 
infinity in such a fashion that stationary-phase points never appear within (or on the 
boundaries of) the region of integration. This applies in the limit E + 0 since, although 
It’I and d ( k a b ) / d o  both become infinite, It’I is, nevertheless, much greater throughout 
the closed region of integration. 

Appendix C. The condition U / N D  > 1/nt 

This condition is sufficient to ensure that (af/l~k,),,~ is always less than U ,  that the 
equation defining k,, has only one real root for each sign choice, and that a simple 
iteration process converges for these roots. 

(a) Derivation of lower bound 

It is required that (aflak,),,, be always less than U or, with K ,  = k ,  D and K ,  = k ,  D ,  
that ( a [ f / N ] / a K J K l c  be always less than U / N D .  This is to ensure that 

does not pass through zero as K ,  varies from zero to infinity. Differentiating (12) 
and using K,, and K ,  instead of k,, and k,, we get 

To get a lower bound on U / N D  we need an upper bound on the right-hand side. If we 
assume K,, and K ,  independent and Iet them take on all possible positive values, then 
the greatest value for the bracket in (C 1 )  occurs when K ,  = 0 regardless of K,, andp. 
The resulting inequality is 

U / N D  > [p2n2/(K2,,+p2n2)f]. (C 2) 

t Note t>hat stationary phase restrictions are not used here. 
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The greatest value of the [ ] occurs when K,, = 0 regardless of the value of p .  For 
K1, = 0, 

U / N D  > ( l /pn) .  (C 3) 

The greatest value of the ( ) occurs when p = 1. The lower bound on U / N D  is then 
l/n and the restriction 

UIND > i/n (C 4) 

prevents [(a( f/N)/aK,), , ,  - U / N D ]  from passing through zero in the integration range 
of K,. 

(b)  Roots of the eyuation defining K,, 
The last equation of (17) is rewritten with k, instead of k,, and K ,  = k, D to give 

The roots of the equation are obtained by plotting the left-hand side and the right- 
hand side against K ,  and noting the intersections. Fix the sign preceding a / N ,  and 
note that only one intersection is possible if the slope of the right-hand side is less than 
unity. The right-hand side is ( f / N ) .  ( N D / U )  plus a constant, and its slope is 

However, this is the same restriction as that considered in (a) ,  and a sufficient 
condition for compliance is 

U / N D  > l/n. (C 7) 

( c )  Convergence of the iteration process for K,,  
The left-hand side of (C 5) plotted against K ,  is a straight line through the origin with 
unit slope. The right-hand side has a lesser magnitude of slope if (UIND) > l/n as 
shown above. The iteration process consists of assuming a trial K,,  substituting this in 
the right-hand side and solving for the left-hand side. This new K ,  is substituted in the 
right-hand side and a new left-hand side is found, etc. It can be shown graphically that 
this process converges when the absolute magnitude of the slope on the right-hand 
side is less than that on the left-hand side (i.e. less than unity). 

If the forcing frequency is greater than the natural frequency ( a / N  > 1) the 
restriction U / N D  > 1/n which applies in (a ) ,  ( b )  and ( c )  above may be relaxed. In  
that case we get from 

and (C 2) becomes 

(C 5) that 

Ki,  > ( N D / U ) 2 ( a / N -  1)2  
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Let U / N D  = 2, [ ( ( T I N )  - 132  = b, pn = a,  and let 01 be a parameter between zero and 
unity; x, b and a are all positive quantities. The inequality (C 9) becomes 

or, with y = a2x2 and a2 < 1.0, 
b > y*- y. 

Then for the right-hand side a maximum, b > &, or [ ( ( T / N )  - 112 > -&, and 

( c / N )  > 1 + 2 / ( 3 4 3 ) .  

It then follows that if the ratio of forcing frequency to natural frequency ( ( T I N )  
exceeds I + 2/(3 4 3 )  the condition that U / N D  should be greater than 1/n is relaxed 
to require only that U / N D  be greater than zero. 

Appendix D. Method of averaging solution to improve convergence 
The expressions for vertical velcoity ( w )  created by the internal waves (e.g. cqua- 

tions ( 13)) ( 19) and (2  1 )) contain summations over p ,  where the vertical wavelength is 
2D/p. The sequence of p values often produces slowly convergent series with large 
contributions of alternating sign, and it is desirable to improve convergence. This is 
particularly important when small calculators (such as the HP-97 or the TI-59) are 
used in place of large computers. Averaging in the vertical direction is useful in such 
cases. Here we consider that  the lift is distributed vertically over a distance 5 el from 
the half-depth, 8 0 ,  and that w is measured a t  a depth e2 below the free surface so that 
- w(a - e2)/e2 is an average dw/dz in the surface layer of thickness s2. 

In  (13) 
w - sin (bpn/D) sin [ (a  - z )pn /D] .  (D 1 )  

With b = D - a and a = 8D + 6,  - el < 6 < el the vertical velocity w becomes 

and the average dw/dz in the surface layer is 

- w(a - e2)  - sin ( i p n )  sin (s ,pn/D) sin ( s2pn /D)  
€2 €2 w n l D  

If for simplicity we let s2 = el = E then 

-w(a-s )  . p n  sin2(Epn/D) 
-'ln (y) s2pn/D . * 8 

I n  the calculation of examples (D 4) replaces (D 1) in (13), (19) and (21). 
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Appendix E. Listing of non-dimensionalized equations used in calculations 
Equations (13)’ (19) and ( 2 1 )  are presented as modified for computing the results 

appearing in this report. (The equations below are specialized to the case that 

a =  b = +D and xL= 0.) 

Equation (13), multiplied by - 2 and modified for computation, becomes? 

-w(a-e)j5sZD2Nx lo4 ~ ~ 
= z c A, A:, cos (K ,  $’ID) cos (K ,  Y / D )  x 104 

8 2nF0 0 0  
m n  

where 

sin [ (’+ N =‘)NT N D  - f N Nt‘] + sin( ;fN N!’) 1 
’ 

f UKl ( d N )  
+ 

(T ’m)  [’ - ( f / N +  UKl/ND 

p2n2 -4 cr 2nn’ 
N K!+KZ ’ N T N ’  

-=- - =  f [ 1 + 4  

&==s~n(&-) 2 . mnl with A -- 

A; =,sin(%) with A; = %. 8 2 . nm 

Equation (19) modified for computation becomes 

x 104 
-w(a-s)  j5slD2N x lo* 2 D m sin2 ( ~ p n / D )  

=--  z (-l)ilCp+l) 
E 27rF0 n2s  1 (ePn/D) 

p odd 

(E 3) 
“sin(K2s/2D) - f! sin(KlcZ/2D) cos (K2y/D)cos(K,,5/D)dK2 

K1C 1 ( a ( f / N ) / a K l ) K l c -  ‘ I N D [  
and twice this for cr = 0. Klc has two values for u $: 0 and one for u = 0. All are defined 
by the iterative equation 

1 - u  
[ 1 +p27r2/(K& + Ki)]* -+ N] * K -  

Also f ! /N2  = [ 1 +p2n2/(K& + KZ)]-l 

and 

Note that U / N D  must be greater than l/n (unless u / N  > 1 + 2/3,/3). 

t After combining the arguments of the final sine-cosine product and summing positive and 
negative m values. 
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Equation (21) modified for computation becomes 

- w(a-e)  jTslD2N x 104 2 4 ( -  l)4(P+l)sin2 ( ~ p n / D )  (cr/N) x lo4 - 
E 2nF0 = (i) p ( ~ ~ n ~ / D ~ )  (1 - v 2 / N 2 )  

p odd 

113 

with 

, ( E 6 )  
sin ( ~ P s  sin 8) sin (:PI cos 0) cos (Pr - an) 

(PrP 
X 

sin 8 cos 0 

Note that cr/N must be less than one for sustained waves. 

Appendix F. A check on preferred directions 
Others working in this field have usually employed stationary phase methods which 

lead to preferred directions. It seems desirable to show the relation of such work to the 
present analysis. 

To investigate the possible appearance of preferred directions we first study w in a 
vertical plane normal to the flow direction. The parameters of example 2 are used 
( a / N  = 4, U / N D  = 5 )  and the vertical plane is located behind the wing a distance 
in times the depth (t;/D = -in). Convergence problems arise for locations near the 
wing path so some averaging is necessary. Here w is averaged over a depth f 0.040 
( e /D  = 0.04) but the lift is fixed at  z / D  = 0 (not distributed vertically as in the previous 
problems). Averaging smooths sharp peaks but does not eliminate them. In figure 10 
the high local velocities induced by vortex lines left behind the wing can clearly be 
seen. This feature (which does not appear in the heaving problem studied by Rehm & 
Radt 1975) tends to obscure preferred directions. The simplest way to avoid this 
difficulty is to increase the wing span. 

If we let the wing span approach co ( s /D- t  co) and study a two-dimensional problem 
the numerical work is greatly reduced and no averaging is necessary. The lateral 
inclinations of the preferred directions are of course lost but the inclinations to the 
horizontal remain. 

Consider the following examples in which no averaging is used (e /D = 0), the 
oscillatory force has a frequency four times the natural frequency ( a / N  = 4), the 
observation line is vertical and behind the wing a distance +n times the fluid depth 
( [ / D  = - in). The velocity of the wing is 5.0, then 0-5, then 0.1 times the product of 
total depth and Brunt-Vaisala frequency ( U / N D  = 5.0, 0.5, 0-1). The quantity w* is 
plotted against depth ( z /D) ,  where w* = w@DN x 104/4(F0/s). 

For U / N D  = 5.0 (the value used for our previous moving wing cases) w* decreases 
uniformly up to the free surface with no indication of preferred directions (see figure 
11). For U / N D  = 0.5 a rounded peak occurs near z / D  = 0-07. For U / N D  = 0.1 a 
sharp peak occurs a t  z / D  = 0.1 with a secondary peak at  z / D  = 0, and disturbances 
above z / D  = 0.1 are small. The latter two cases resemble the results of Rehm & Radt 
(their figure 9) which show preferred inclinations to the horizontal of roughly 2 degrees 
to 6 degrees for cr/N (their w / N )  of 4. 
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